Exogenous, but not Endogenous Nitric Oxide Inhibits Adhesion Molecule Expression in Human Endothelial Cells
نویسندگان
چکیده
Nitric oxide (NO) has many beneficial actions on the vascular wall including suppression of inflammation. The mechanism(s) by which NO antagonizes cytokine signaling are poorly understood, but are thought to involve inhibition of the pro-inflammatory transcription factor, NF-κB. NO represses nuclear translocation of NF-κB via the S-nitrosylation of its subunits which decreases the expression of target genes including adhesion molecules. In previous studies, we have shown that the intracellular location of endothelial nitric oxide synthase (eNOS) can influence the amount of NO produced and that NO levels are paramount in regulating the S-nitrosylation of target proteins. The purpose of the current study was to investigate the significance of subcellular eNOS to NF-κB signaling induced by pro-inflammatory cytokines in human aortic endothelial cells (HAECs). We found that in HAECs stimulated with TNFα, L-NAME did not influence the expression of intercellular adhesion molecule 1 (ICAM-1) or vascular cell adhesion molecular 1 (VCAM-1). In eNOS "knock down" HAECs reconstituted with either plasma membrane or Golgi restricted forms of eNOS, there was no significant effect on the activation of the NF-κB pathway over different times and concentrations of TNFα. Similarly, the endogenous production of NO did not influence the phosphorylation of IκBα. In contrast, higher concentrations of NO derived from the use of the exogenous NO donor, DETA NONOate, effectively suppressed the expression of ICAM-1/VCAM-1 in response to TNFα and induced greater S-nitrosylation of IKKβ and p65. Collectively these results suggest that neither endogenous eNOS nor eNOS location is an important influence on inflammatory signaling via the NF-κB pathway and that higher NO concentrations are required to suppress NF-κB in HAECs.
منابع مشابه
Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat
Objective(s): Fluvoxamine is a well-known selective serotonin reuptake inhibitor (SSRI); Despite its anti-inflammatory effect, little is known about the precise mechanisms involved. In our previous work, we found that IP administration of fluvoxamine produced a noticeable anti-inflammatory effect in carrageenan-induced paw edema in rats. In this study, we aimed to evaluate the effect of fluvoxa...
متن کاملTNF-α induced endothelial MAdCAM-1 expression is regulated by exogenous, not endogenous nitric oxide
BACKGROUND MAdCAM-1 is an adhesion molecule expressed in Peyer's patches and lymphoid tissues which is mobilized by cytokines like TNF-alpha and is a major determinant of lymphocyte trafficking to the gut in human inflammatory bowel disease (IBD). It has been suggested that both reactive oxygen and nitrogen metabolites participate in regulating adhesion molecule expression in response to TNF-al...
متن کاملiNOS expression in human intestinal microvascular endothelial cells inhibits leukocyte adhesion.
Increased nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) has been associated with intestinal inflammation, including human inflammatory bowel disease. However, NO can downregulate endothelial activation and leukocyte adhesion, critical steps in the inflammatory response. Using primary cultures of human intestinal microvascular endothelial cells (HIMEC), we determined the...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملUp-regulation of endothelial nitric oxide synthase inhibits pulmonary leukocyte migration following lung ischemia-reperfusion in mice.
Endogenous nitric oxide (NO) is known to modulate post-ischemic inflammatory response in various organs. However, the role of nitric oxide synthase isoforms (NOS) in mediating pulmonary post-ischemic inflammatory response is poorly understood. We therefore studied post-ischemic endothelial adhesion molecule expression and leukocyte migration in endothelial NOS knockout (eNOS-KO) mice subjected ...
متن کامل